- +1
百度开源业内首个口罩人脸识别模型,可甄别未戴口罩人群
人工智能技术正被应用到疫情防控中来。本周随着各企业相继复工,节后经济开始逐渐恢复,人脸口罩检测方案成为返工潮中众多社区、大型厂商、央企的重要需求。
2月13日,百度宣布免费开源业内首个口罩人脸检测及分类模型。该模型可以有效检测在密集人流区域中携带和未携戴口罩的所有人脸,同时判断出他们是否佩戴口罩。广大开发者和企业厂商可通过免费开源的AI模型,快速完成软件开发。
绿框表示正确佩戴口罩,红框表示识别出未佩戴口罩。百度方面表示,在疫情之下,企业判断工区员工是否佩戴口罩、人流密集的关口运输中心如何识别戴口罩的人脸并测温、佩戴口罩是否也能完成日常刷脸打卡等,都是新冠肺炎疫情下需要解决的真实痛点。
此次宣布免费开源的自研口罩人脸检测及分类模型,是基于2018年百度收录于国际顶级计算机视觉会议ECCV的论文PyramidBox研发,可以在人流密集的公共场景检测海量人脸的同时,将佩戴口罩和未佩戴口罩的人脸快速识别标注。基于此预训练模型,开发者仅需使用少量自有数据,便可快速完成自有场景的模型开发。
百度研发工程师介绍,口罩人脸检测及分类模型,由两个功能单元组成,可以分别完成口罩人脸的检测和口罩人脸的分类。经测试,模型的人脸检测算法基于主干网络加入了超过10万张口罩人脸数据训练,可在准确率98%的情况下,召回率显著提升30%。而人脸口罩判断模型可实现对人脸是否佩戴口罩的判定,口罩判别准确率达到96.5%,满足常规口罩检测需求。开发者基于自有场景数据还可进行二次模型优化,可进一步提升模型准确率和召回率。
而对于实际场景中的光照、口罩遮挡、表情变化、尺度变化等问题,模型具有鲁棒性,并且能够在多种不同端、边、云设备上实时检测,在落地过程中做到真正实用。
同时,为了最大程度方便开发者应用,百度深度学习平台飞桨通过简单易用的预训练模型管理工具将人脸口罩检测模型开源出来,只需基本的python编程能力,即可快速上手调用,如果具有一定的移动端APP开发能力,也可以快速将模型部署到移动端上。此外飞桨还将提供海量二次开发的工具组件,以及更多的人脸相关检测算法,以上所有技术及工具都是开源且免费的。
- 报料热线: 021-962866
- 报料邮箱: news@thepaper.cn
互联网新闻信息服务许可证:31120170006
增值电信业务经营许可证:沪B2-2017116
© 2014-2024 上海东方报业有限公司