- +1
Science子刊:谈攀/洪亮/刘佳/宋杰团队开发用于蛋白质设计的通用AI模型
编辑丨王多鱼
排版丨水成文
2024年10月,DeepMind公司的 Demis Hassabis、John Jumpe 获得了诺贝尔化学奖,他们开发的AlphaFold2解决了生物学上大半个世纪的难题——从蛋白质序列预测其三维结构。
后Alphafold时代,蛋白质科学的关键问题是什么?一定是蛋白质功能,因为只有具备好的功能(高活性、高选择性、高稳定性)才能成为商业化的蛋白产品。然而蛋白质功能预测非常困难。一个常识是:一条蛋白质序列只要改变1%,获得的新蛋白95%活性大幅降低甚至完全没有生物功能,而用AlphaFold2去预测这些序列的结构基本没有变化。这表明蛋白质结构不等于功能,结构是功能的必要非充分条件,而且非常不充分。
2024年11月27日,上海人工智能实验室谈攀、上海交通大学自然科学研究院/物理与天文学院/张江高等研究院洪亮、上海科技大学刘佳和中国科学院杭州医学院宋杰团队合作,在 Science 子刊 Science Advances 上发表了题为:A General Temperature-Guided Language Model to Design Proteins of Enhanced Stability and Activity 的研究论文。
该研究开发了一个通用的温度感知语言模型——Pro-PRIME,用于设计稳定性和活性增强的蛋白质。
该研究开发的Pro-PRIME(Protein language model for Intelligent Masked pretraining and Environment prediction)。该模型能够在不依赖提前实验数据的情况下,预测特定蛋白质突变体的性能改进。Pro-PRIME基于“温度感知”语言模型进行训练,依赖9600万带有温度标签的蛋白质序列数据集,结合token层面的掩码语言建模(MLM)任务,和序列层面最优生长温度(OGT)预测目标,并通过多任务学习引入correlation loss项来对齐token和序列层面的任务信息,使得大模型更好地捕捉蛋白质序列的温度特征。
这种方法使得PRIME天然地倾向给予具备高温耐受性的蛋白序列更高的分数,以优化其稳定性和生物活性。Pro-PRIME模型,在完全没有湿实验数据的情况,首先使用PRIME的零样本预测能力进行少量单点突变的测试,随后使用实验数据迭代监督学习预测多点突变体,在总共不超过4轮湿实验迭代,只进行几十个突变体实验情况下成功设计多款性能优异的蛋白质。
Pro-PRIME的预训练方法和单点突变零样本预测方法,以及干湿迭代策略
PRIME模型在目前公共突变数据库中的283个蛋白质实验中(ProteinGym和ΔTm),表现出超越现有最先进模型的强大预测能力;同时在野生型蛋白质溶解温度Tm预测和最适酶促反应温度Topt预测中都取得了超越现有最先进模型的强大预测能力。
在湿实验中,团队选择了五种蛋白质进行实际验证,包括LbCas12a、T7 RNA聚合酶、肌酸酶、人工核酸聚合酶,以及一个特异性纳米抗体的重链可变区。在top 30-45个单位点突变的实验检验中,超过30%的AI推荐单点突变体在关键性能,如热稳定性、酶促活性、抗原-抗体结合亲和力、非天然核酸聚合能力或者极端碱性条件下的耐受性等方面明显优于野生型蛋白,个别蛋白质的阳性率超过50%。
PRIME模型预测五种蛋白质的单点突变体的结构和性能结果概览
此外,团队基于PRIME还展示了一种高效的方法,可快速获得具备增强活性和稳定性的多位点突变体。通过这种高效的小样本微调方法,在不到100个湿实验样本下,2-4轮进化就能产生非常优异的蛋白质突变体。并且,在LbCas12a、T7 RNA聚合酶的实验中Pro-PRIME能将阴性单点突变叠加得到阳性多点突变。这表明PRIME从序列数据中学习到蛋白质突变的上位效应,这对传统蛋白质工程意义重大。
综上所述,Pro-PRIME在蛋白质工程中,表现出了广泛的适用性。PRIME提供了一种全新的蛋白质突变体设计方法,不需要庞大的实验数据积累,极大地提高了突变体筛选的效率和准确性。通过有效减少实验筛选的依赖,PRIME不仅在突变体的设计上提高了成功率,还为传统方法未能解决的工程难题提供了创新的解决方案。它能够有效预测出一种蛋白质的多种属性,为科学家在不熟悉的蛋白质领域也能获取成功设计提供了宝贵的工具。
这项技术的潜力不仅限于目前的研究实例,还可以应用于广泛的工业和医药领域,尤其是在那些需要蛋白质表现出极端温度或环境特性耐受性的场景中。未来,借助这项创新,蛋白质工程将迎来更广泛的应用场景,显著降低实验成本,并加速产品开发进程。这项研究显著推动了蛋白质设计的边界,是一项有望改变行业规则的重要突破。同时,PRIME的correlation多任务预训练模式,为以后的大模型预训练中引入生物物理先验知识提供了重要借鉴意义。
PRIME的创新性通过结合深度学习和大数据资源,为蛋白质工程提供了一种高效且实用的新途径。它不仅提升了蛋白质稳定性和活性设计的成功率,还在资源有限的条件下,提高了实验效率。随着这项技术的持续开发和应用,蛋白质工程领域必将迎来新的突破,推动科学研究和工业应用的蓬勃发展。
上海交通大学自然科学研究院/物理与天文学院/张江高等研究院洪亮教授,上海人工智能实验室青年研究员谈攀,上海科技大学刘佳和中国科学院杭州医学院宋杰为通讯作者。上海交通大学物理天文学院博士生姜帆,上海人工智能实验室实习生李明辰,上海科技大学董家君,上海交通大学余元玺、吴邦昊以及中国科技大学孙鑫宇为共同第一作者。
论文链接:
https://www.science.org/doi/10.1126/sciadv.adr2641
本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问http://renzheng.thepaper.cn。
- 报料热线: 021-962866
- 报料邮箱: news@thepaper.cn
互联网新闻信息服务许可证:31120170006
增值电信业务经营许可证:沪B2-2017116
© 2014-2025 上海东方报业有限公司