澎湃Logo
下载客户端

登录

  • +1

英伟达H100用11分钟训完GPT-3,PyTorch创始人:不要只看时间

2023-07-01 07:22
来源:澎湃新闻·澎湃号·湃客
字号

机器之心报道

编辑:杜伟

赢了,但没有全赢。

昨天,老黄又「赢麻了」!

为啥呢?原来在最新的 MLPerf 基准测试中,英伟达 H100 GPU 芯片组在以下八项基准测试中全部创下了新纪录,同时成为唯一一个跑完所有测试的硬件平台。

据悉,最新 MLPerf Training v3.0 包含了基于 GPT-3 175B 的大型语言模型(LLM)测试,侧重于生成式 AI 能力。

图源:MLPerf benchmarks。

LLM 训练测试中还使用了专注于 GPU 加速的云计算服务提供商 CoreWeave 提供的 NVIDIA HGX H100 基础设施,在多个规模上联合提交了 LLM 工作负载。

出来的结果令人振奋:在 896 个英特尔 Xeon Platinum 8462Y 和 3584 个英伟达 H100 芯片的合作下,仅仅用了 11 分钟就完成了基于 GPT-3 的 LLM 训练任务。

一时之间,AI 社区响起了老黄赢麻了的欢呼声。

可结果真如此吗?今天有人对此事提出了质疑。

先是 PyTorch 创始人 Soumith Chintala,他认为 GPT-3 并没有在 11 分钟内训练完成。使用 3584 个 H100 GPU,GPT-3 架构在 C4 数据集上训练了 11 分钟,对数概率为 2.69。

这里不要只关注「11 分钟」,因为这就像说「ResNet-50 在 MNIST(其实这里他想说的是 CIFAR100)上,5 秒内训练达到了 80%的准确率。」

推特用户 @abhi_venigalla 对 Soumith 的观点表示赞同,他是生成式 AI 创业公司 MosaicML 的研究者。他认为 MLPerf 基准测试中训练 GPT-3 的时间更可能是 2 天。

在他看来,该基准测试并不是完整的 GPT-3。MLPerf 的 LLM 基准只提供了一个开始的检查点,然后必须达到目标损失。

因此,该基准 11 分钟跑完 GPT-3 只覆盖 1.2B 的 token,而非完整的 300B token。此外看起来更像是 540 TFLOPs/H100,从配置上看像 FP8,~27% MFU。

不过他也承认,从 H100 在其软件生命周期早期这一点来看,以此规模实现现在这种性能也相当惊人。

所以,最新 MLPerf 基准测试中 11 分钟训完 GPT-3 是不是被误解呢?评论区的小伙伴也可以发表下自己的观点。

参考链接:https://developer.nvidia.com/blog/breaking-mlperf-training-records-with-nvidia-h100-gpus/

© THE END

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

原标题:《英伟达H100用11分钟训完GPT-3,PyTorch创始人:不要只看时间》

阅读原文

    本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问http://renzheng.thepaper.cn。

    +1
    收藏
    我要举报
            查看更多

            扫码下载澎湃新闻客户端

            沪ICP备14003370号

            沪公网安备31010602000299号

            互联网新闻信息服务许可证:31120170006

            增值电信业务经营许可证:沪B2-2017116

            © 2014-2024 上海东方报业有限公司

            反馈